Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; : 116955, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710373

RESUMO

Lung cancer is one of the most aggressive malignancies with a high mortality rate. In large cities, particulate matter (PM) is a common air pollutant. High PM levels with aerodynamic size ≤2.5 µm (PM2.5) associates with lung cancer incidence and mortality. In this work, we explored PM2.5 effects on the behavior of lung cancer cells. To this, we chronically exposed A549 cells to increasing PM2.5 concentrations collected in México City, then evaluating cell proliferation, chemoresponse, migration, invasion, spheroid formation, and P-glycoprotein and N-cadherin expression. Chronic PM2.5 exposure from 1 µg/cm2 stimulated A549 cell proliferation, migration, and chemoresistance and upregulated P-glycoprotein and N-cadherin expression. PM2.5 also induced larger multicellular tumor spheroids (MCTS) and less disintegration compared with control cells. Therefore, these results indicate lung cancer patients exposed to airborne PM2.5 as urban pollutant could develop more aggressive tumor phenotypes, with increased cell proliferation, migration, and chemoresistance.

2.
Chem Biol Interact ; 382: 110616, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385402

RESUMO

Mitochondria-endoplasmic reticulum (ER) communication relies on platforms formed at the ER membrane with the mitochondrial outer membrane contact sites (MERCs). MERCs are involved in several processes including the unfolded protein response (UPR) and calcium (Ca2+) signaling. Therefore, as alterations in MERCs greatly impact cellular metabolism, pharmacological interventions to preserve productive mitochondrial-ER communication have been explored to maintain cellular homeostasis. In this regard, extensive information has documented the beneficial and potential effects of sulforaphane (SFN) in different pathological conditions; however, controversy has arisen regarding the effect of this compound on mitochondria-ER interaction. Therefore, in this study, we investigated whether SFN could induce changes in MERCs under normal culture conditions without damaging stimuli. Our results indicate that non-cytotoxic concentration of 2.5 µM SFN increased ER stress in cardiomyocytes in conjunction with a reductive stress environment, that diminishes ER-mitochondria association. Additionally, reductive stress promotes Ca2+ accumulation in the ER of cardiomyocytes. These data show an unexpected effect of SFN on cardiomyocytes grown under standard culture conditions, promoted by the cellular redox unbalance. Therefore, it is necessary to rationalize the use of compounds with antioxidant properties to avoid triggering cellular side effects.


Assuntos
Mitocôndrias , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361726

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are widely used in the cosmetic industry. They are nano-optical and nano-electrical devices, and their antimicrobial properties are applied in food packaging and medicine. ZnO NPs penetrate the body through inhalation, oral, and dermal exposure and spread through circulation to various systems and organs. Since the cardiovascular system is one of the most vulnerable systems, in this work, we studied ZnO NPs toxicity in H9c2 rat cardiomyoblasts. Cardiac cells were exposed to different concentrations of ZnO NPs, and then the morphology, proliferation, viability, mitochondrial membrane potential (ΔΨm), redox state, and protein expression were measured. Transmission electron microscopy (TEM) and hematoxylin-eosin (HE) staining showed strong morphological damage. ZnO NPs were not observed inside cells, suggesting that Zn2+ ions were internalized, causing the damage. ZnO NPs strongly inhibited cell proliferation and MTT reduction at 10 and 20 µg/cm2 after 72 h of treatment. ZnO NPs at 20 µg/cm2 elevated DCF fluorescence, indicating alterations in the cellular redox state associated with changes in ΔΨm and cell death. ZnO NPs also reduced the intracellular expression of troponin I and atrial natriuretic peptide. ZnO NPs are toxic for cardiac cells; therefore, consumption of products containing them could cause heart damage and the development of cardiovascular diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Ratos , Animais , Óxido de Zinco/química , Nanopartículas/toxicidade , Nanopartículas/química , Microscopia Eletrônica de Transmissão , Oxirredução , Íons , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
4.
Cardiovasc Toxicol ; 22(8): 713-726, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35633469

RESUMO

Cardiovascular diseases are the leading cause of death worldwide. Food-grade TiO2 (E171) is the most widely used additive in the food industry. Existing evidence shows TiO2 nanoparticles reach systemic circulation through biological barriers, penetrate cell membranes, accumulate in cells of different organs, and cause damage; however, their effects on cardiac cells and the development of heart diseases are still unexplored. Therefore, in this work, we tested E171 toxicity in rat cardiomyoblasts and hearts. E171 internalization and impact on cell viability, proliferation, mitochondria, lysosomes, F-actin distribution, and cell morphology were evaluated in H9c2 cells. Additionally, effects of E171 were measured on cardiac function in ex vivo rat hearts. E171 was uptaken by cells and translocated into the cytoplasm. E171 particles changed cell morphology reducing proliferation and metabolic activity. Higher caspase-3 and caspase-9 expression as well as Tunel-positive cells induced by E171 exposure indicate apoptotic death. Mitochondrial and lysosome alterations resulting from mitophagy were detected after 24 and 48 h exposure, respectively. Additionally, high E171 concentrations caused rearrangements of the F-actin cytoskeleton. Finally, hearts exposed to E171 showed impaired cardiac function. These results support E171 toxicity in cardiac cells in vitro altering cardiac function in an ex vivo model, indicating that consumption of this food additive could be toxic and may lead to the development of cardiovascular disease.


Assuntos
Nanopartículas , Titânio , Animais , Sobrevivência Celular , Aditivos Alimentares/toxicidade , Nanopartículas/toxicidade , Ratos , Titânio/toxicidade
5.
J Steroid Biochem Mol Biol ; 208: 105818, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508440

RESUMO

Cancer is one of the leading causes of death worldwide, and breast cancer is the most common among women. Dehydroepiandrosterone (DHEA), the most abundant steroid hormone in human serum, inhibits proliferation and migration of breast cancer cells, modulating the expression of proteins involved in mesenchymal-epithelial transition (MET). However, the underlying molecular mechanisms are not fully understood. DHEA effects on the triple-negative breast cancer cell line MDA-MB-231 (mesenchymal stem-like) could be exerted by binding to receptors tyrosine kinase (RTKs) and signaling through MEK/ERK and/or PI3K/Akt pathways. In this study, MDA-MB-231 cells were exposed to DHEA in the presence of pharmacological inhibitors of these pathways and a siRNA against PIK3CA gene, which blocks PI3K pathway. Cell proliferation was measured by crystal violet staining, migration by the wound healing and transwell assays, and MET protein expression by western blot. A xenograft tumor growth in nude mice (nu-/nu-) using a siRNA against PI3K was also performed. Results showed that neither of the inhibitors used reverted the antiproliferative activity of DHEA. However, wortmannin and LY294002, inhibitors of the PI3K/Akt pathway, abolished the up- and down-regulation of E- and N-cadherin expression respectively, and inhibition of migration induced by DHEA in MDA-MB-231 cells. The siRNA that blocks the PI3K pathway, abolished the effects of DHEA on proliferation, migration, MET proteins expression and the growth of tumors in nude mice. In conclusion, these results suggest that PI3K/Akt pathway participates in the effects of DHEA on breast cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Desidroepiandrosterona/farmacologia , Transição Epitelial-Mesenquimal/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Caderinas/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Chem Biol Interact ; 317: 108966, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004531

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) are widely used in the food industry, cosmetics, personal care and paints among others. Through occupational exposure and daily consumption, and because of their small size, TiO2-NPs can enter the body through different routes such as oral, dermal and inhalation, and accumulate in multiple organs including the brain. TiO2-NPs cause severe damage to many cell types, however their effects in the central nervous system remain largely unexplored. Therefore, in the present study we determined the cytotoxic effect of TiO2-NPs on rat astrocytes. We tested the oxidant properties of TiO2-NPs through DTT depletion, and measured oxidative stress-induced damage in mitochondria, through oxidation of 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) and loss of mitochondrial membrane potential (ΔΨm) with Mitotracker Green FM. We further examined oxidative stress-derived responses such as IκB-α degradation by Western Blot, NF-κB translocation by EMSA, autophagy induction by LC3-II levels, and expression of the inflammasome protein NLRP3. TiO2-NPs showed high oxidant properties and induced strong oxidative stress in astrocytes following their internalization, causing mitochondrial damage detected by ΔΨm loss. Responses against oxidative damage such as NF-κB translocation and autophagy were induced and NLRP3 protein expression was downregulated, indicating lower inflammasome-mediated responses in astrocytes. These results support TiO2-NPs cytotoxicity in astrocytes, cells that play key roles in neuronal homeostasis and their dysfunction can lead to neurological disorders including cognitive impairment and memory loss.


Assuntos
Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Células Cultivadas , Regulação para Baixo , Nanopartículas Metálicas , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Ratos Wistar , Titânio
7.
Chem Res Toxicol ; 32(4): 578-588, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30730135

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely used for industrial and commercial applications. Once inside the body, they translocate into the bloodstream and reach different areas of the cardiovascular system including the heart, increasing the risk of developing cardiovascular diseases; consequently, the investigation of their interaction with cardiac cells is required. We previously showed that TiO2 NPs are internalized by H9c2 rat cardiomyoblasts, and here, we examined the molecular mechanisms underlying this process. TiO2 NPs internalization was evaluated by transmission electron microscopy, time-lapse microscopy, and flow cytometry. Changes in the actin cytoskeleton were studied by phalloidin staining. Endocytic uptake mechanisms for nanoparticles were probed with chemical inhibitors, whereas clathrin and dynamin expression was measured by Western blot. Cellular uptake of TiO2 NPs occurred early after 30 min exposure, and large aggregates were observed after 1 h. Actin cytoskeleton reorganization included cell elongation plus lower density and stability of actin fibers. Cytochalasin-D inhibited TiO2 NPs uptake, indicating actin-mediated internalization. Dynamin and clathrin levels increased early after TiO2 NPs exposure, and their inhibition reduced nanoparticle uptake. Therefore, TiO2 NPs internalization by H9c2 rat cardiomyoblasts involves actin cytoskeleton reorganization and clathrin/dynamin-mediated endocytosis.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Titânio/metabolismo , Actinas/química , Animais , Células Cultivadas , Clatrina/química , Dinaminas/química , Endocitose , Ratos , Titânio/química
8.
Molecules ; 23(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082584

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in industry and daily life. TiO2 NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO2 NPs on H9c2 rat cardiomyoblasts. Internalization of TiO2 NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO2 NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H2DCFDA oxidation. TiO2 NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO2 NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Titânio/química , Titânio/toxicidade , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
9.
Toxicol Appl Pharmacol ; 333: 26-34, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28803991

RESUMO

Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu-/nu-) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/uso terapêutico , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Camundongos Nus , Fatores de Transcrição da Família Snail/metabolismo , Carga Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...